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Abstract—This article investigates the differentially pri-
vate bipartite consensus problem over signed networks. To
solve this problem, a new algorithm is proposed by adding
noises with time-varying variances to the cooperative–
competitive interactive information. In order to achieve the
privacy protection, the variances of the added noises are
allowed to increase, which are substantially different from
the existing works. In addition, the variances of the added
noises can be either decaying or constant. By using a
time-varying step-size based on the stochastic approxi-
mation method, we show that the algorithm converges in
mean-square and almost-surely even with increasing pri-
vacy noises. We further develop a method to design the
step-size and the noise parameter, affording the algorithm
to achieve the average bipartite consensus with the de-
sired accuracy and the predefined differential privacy level.
Moreover, we give the mean-square and almost-sure con-
vergence rates of the algorithm, and the privacy level with
different forms of the privacy noises. We also reveal the
tradeoff between the accuracy and the privacy, and extend
the results to local differential privacy. Finally, a numerical
example verifies the theoretical results and demonstrates
the algorithm’s superiority against existing methods.

Index Terms—Convergence rate, differential privacy, mul-
tiagent system, signed network, stochastic approximation.

I. INTRODUCTION

D ISTRIBUTED consensus control of multiagent systems
(MASs) is significant due to its numerous applications,

such as energy internet [1], [2], cooperative guidance sys-
tems [3], and social networks [4]. Generally, it refers to designing
a network protocol such that all agents asymptotically reach an
agreement. To date, many works have been developed on the
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consensus control of MASs, including average consensus [5],
[6], [7], [8], [9], [10], [11], max consensus [12], group con-
sensus [13], [14], and bipartite consensus [15], [16], [17], [18],
[19]. Among others, cooperative and competitive interactions
exist simultaneously in many complex systems, such as so-
cial networks, duopolistic markets in economic systems, teams
opposed in a sports match, competing international alliances,
biology systems, and two-party political systems [15], [20],
[21]. For example, in social networks, each agent controls a
time-dependent state variable, which denotes its opinion on
some issue. Each agent updates its opinion based on its own
current opinion, the current opinions of its neighbors, and its
relationships (friendship or antagonism) with its neighbors. For
those neighbors with friendship, the agent trusts their opinions;
for those neighbors with antagonism, the agent does not trust
their opinions, and takes the opposite of their opinions in up-
dating. For modeling such networks, signed graph theory and
bipartite consensus problems were formulated in [15], where the
agents achieved an agreement with identical values but opposite
signs. Currently, some substantial progresses have been made
for bipartite consensus control of MASs [15], [16], [17], [18],
[20], [21].

With the increasing need for privacy and security, preserving
the privacy of data is required in many applications. For example,
in social networks [22], exchanging opinions probably reveals
individual privacy when potential attackers exist. Thus, privacy-
preserving in social networks has become a hot research topic. In
cooperative guidance systems [3], information interactions may
expose the missiles’ and the launch stations’ location. Hence, a
naturally arising problem is how to achieve a bipartite consensus
while protecting each agent’s sensitive information from being
inferred by potential attackers.

To address the requirement for privacy protection in dis-
tributed control, some methods have been proposed recently
to counteract such potential privacy breaches, such as homo-
morphic encryption [23], [24], adding noises [25], [26], [27],
time-varying transformation [28], [29], and state decomposi-
tion [30]. Homomorphic encryption allows direct calculation
of encrypted data without revealing any information about the
original text. But, such approaches incur a heavy communication
and computation overhead. Accurate consensus is achieved by
adding correlated noises to interaction information while pro-
tecting the initial states from semihonest agents [25], [26], [27].
However, if the potential passive attackers obtain the information
received and delivered by an agent, then this agent’s initial
state can be estimated through an iterative observer under such
correlated noises mechanism. Generally speaking, current meth-
ods considering privacy preservation in average consensus as-
sume that the honest-but-curious adversary cannot access the
entire neighborhood set of an agent [23], [25], [28], [30].
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Differential privacy techniques have been widely considered
when publishing data from many technology companies, such as
Google and Apple. Based on the original definition given by [31],
ε-differential privacy has been extended to the multiagent sce-
nario, including protecting the agent’s initial states in a consen-
sus problem [32], protecting the objection function in distributed
optimization [33], [34] and games [35], and protecting the global
state trajectories in Kalman filtering [36], [37]. From a system
control perspective, a tutorial and comprehensive framework
of privacy security on control systems is provided in [38].
By adding uncorrelated noises on information, a differentially
private consensus algorithm is designed for discrete-time MASs,
where agents achieve unbiased convergence to the average al-
most surely [39], [40]. In particular, it is interesting to know
that adding one-shot noise at the beginning can achieve the
optimal privacy and accuracy tradeoff [39]. An ε-differentially
private consensus algorithm is designed in [41] for continuous-
time heterogeneous MASs, while an event-triggered scheme
is proposed in [42] to reduce the control updates and ensure
the ε-differentially private of the algorithm. Overall, the above-
mentioned literature has two common grounds: 1) all algorithms
are designed for average consensus, and 2) in order to guarantee
the convergence and satisfy the differential privacy level, the
privacy noises are required to be decaying exponentially to zero
(or constant) with time. In fact, the interaction between practical
systems involves cooperation and competitiveness simultane-
ously. Although the differential privacy bipartite consensus over
signed graphs is considered, the privacy noises with exponential
decay to zero are required in [43] and [44]. Note that decaying
noises to zero potentially expose the trajectory of the state.
Then, the following questions arise. Is it possible to give a more
general noise form for privacy-preserving distributed consensus
algorithm with guaranteed convergence? If possible, how do
the added privacy noises affect the algorithm’s convergence rate
and privacy level? These questions motivate us to investigate
the privacy-preserving bipartite consensus algorithm and relax
the limitation of the existing privacy noise forms.

This article designs a new differentially private bipartite
consensus algorithm over signed networks. Specifically, each
agent adds Laplace noises on the local state, and then transmits
it to its neighbors. The added noises are with time-varying
variances (which may increase with time). If the algorithm’s
step-size α(k) satisfies the stochastic approximation condition,
then the algorithm can achieve the mean-square and almost-sure
bipartite consensus. In summary, the contributions of this article
are fourfold.

1) A new differentially private bipartite consensus algorithm
is developed, compared with the existing literature [43],
[44]. Specifically, in order to achieve privacy protection
and avoid directly exposing the information about the
state, the variances of the added noises are more general
and allowed to increase. In addition, the variances of
the added noises can be either decaying or constant,
and cover the ones in [32], [39], [40], [41], [42], [43],
[44]. By employing a time-varying step-size based on the
stochastic approximation method, both the mean-square
and almost-sure average bipartite consensus of the algo-
rithm are given even with increasing privacy noises.

2) Both the mean-square and almost-sure convergence rates
of the algorithm with different forms of privacy noises
are given. To the best of our knowledge, it is the first to

rigorously characterize both the mean-square and almost-
sure convergence rates of distributed consensus with in-
creasing noises. Even without considering privacy pro-
tection, our proof techniques fundamentally differ from
existing counterparts and are of independent interest.

3) A guideline for designing the time-varying step-size and
the time-varying variances of the added noises is pre-
sented such that the algorithm can achieve the average
bipartite consensus with the desired accuracy and prede-
fined differential privacy level.

4) The tradeoff between the accuracy and the privacy is
shown. When the variances of the added noises increase,
both the mean-square average bipartite consensus and
differential privacy with a finite privacy level over the in-
finite time horizon are established. Hence, our algorithm
is effective for protecting the infinite time sequences of
the state with guaranteed convergence, which is superior
to the algorithms in [32], [39], [40], [42], [43], and [44].

It is worth noting that this article’s results are significantly
different from the literature. A comparison with the state-of-
the-art is given as follows. Regarding the noise-perturbation
approaches, we remove the conditions requiring the added noises
are exponentially decaying [32], [39], [40], [42], [43], [44], or
with constant variance [41]. Furthermore, compared with [45]
only considering eavesdroppers, we consider eavesdroppers and
honest-but-curious agents simultaneously. Compared with [23],
[25], [28], [30], we remove the condition requiring that the
adversary has no access to a target agent’s communications
with all of its neighbors, and hence, protect a more robust
privacy of agents regardless of any auxiliary information an
adversary may have. Compared with [7], [9], [10], [11], we
consider the increasing noises case, and obtain both mean-square
and almost-sure convergence rates of the algorithm. More-
over, we generalize communication topologies from unsigned
graphs [25], [26], [39], [40], [41], [42] to a class of signed
graphs.

This article is organized as follows. Section II provides the
preliminaries and the problem statement. Section III introduces
the algorithm’s convergence and privacy analysis, while Section
IV presents a numerical example. Finally, Section V concludes
this article.

Notation: Denote R, N as the sets of the real numbers and
nonnegative integers, respectively. Let Rn be the n-dimensional
real space, and Rn×m be a set of n×m real matrices. In repre-
sents n× n identity matrix, and 1n is an n-dimension column
vector with all elements being 1. The notation diag(b1, . . ., bN )
denotes the diagonal matrix with diagonal elements b1, . . . , bN .
For a random variable X ∈ R, EX and Var(X) denote the
expectation and variance of X , respectively. Lap(μ, b) denotes
the Laplace distribution with mean μ and scale parameter b.
Γ(x) =

∫ +∞
0 tx−1e−tdt is the gamma function and Γ(x, z) =∫ +∞

z tx−1e−tdt is the upper incomplete gamma function. For se-
quences {f(k), k = 0, 1, . . .} and {g(k), k = 0, 1, . . .}, f(k) =
O(g(k)) means that there exist positive A and k0 such that
| f(k)g(k) | ≤ A for all k > k0. For any x ∈ R, sgn(x) is the sign
function defined as sgn(x) = 1 if x > 0; −1 if x < 0; and 0
if x = 0. For square matrices Al, . . . , Ak, denote

∏k
i=l Ai =

Ak · · ·Al for k ≥ l and
∏k

i=k+1 Ai = In. For x ∈ Rn, ‖x‖1 =∑n
i=1 |xi|, ‖x‖ =

√∑n
i=1 x

2
i .
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory

Let G = (V, E ,A) be an undirected signed graph with a set
of agents V = {1, 2, . . . , N}, a set of edges E ∈ V × V , and a
weighted adjacency matrix A = (aij)N×N . Agent i represents
the ith system, and an edge eji in the graph is denoted by the
ordered pair agents {j, i}. {j, i} ∈ E if and only if Agent i can
obtain the information from Agent j. For the adjacency matrix
A, aij �= 0 if {j, i} ∈ E , and aij = 0, otherwise. Specifically,
the interaction between Agents i and j is cooperative if aij > 0,
and competitive if aij < 0. We assume there is no self-loop in
the graph G, i.e., aii = 0. Let Ni = {j|{j, i} ∈ E} be the set
of Agent i’s neighbors. The Laplacian matrix L = (lij)N×N of
graph G is defined as lii =

∑N
k=1,k �=i |aik| and lij = −aij if

i �= j. We denote ci =
∑

j∈Ni
|aij | as the degree of Agent i. For

a signed graph, we define the greatest degree and the smallest
degree as cmax = max{ci, i ∈ V} and cmin = min{ci, i ∈ V}.
Furthermore, structural balance is defined as follows.

Definition 2.1 (Structural balance, [15]): A signed graph G
is structurally balanced if V can be divided into two disjoint
subsets V1 and V2 (i.e., V1

⋃
V2 = V and V1

⋂
V2 = ∅) such

that aij ≥ 0 for ∀i, j ∈ Vh(h ∈ {1, 2}), and aij ≤ 0 for ∀i ∈
Vh, j ∈ Vq, h �= q, (h, q ∈ {1, 2}).

Assumption 2.1: The signed graph G is connected and struc-
turally balanced.

Remark 2.1: Assumption 2.1 is an important assumption on
the signed graph G, which is commonly used to ensure the
bipartite consensus [15], [16], [17], [18]. From Definition 2.1, a
graph is still said to be structurally balanced ifV1 or V2 is empty.
Obviously, the graph with nonnegative weights in traditional
consensus problem [32], [39] satisfies Assumption 2.1.

Lemma 2.1 ([15]): If Assumption 2.1 holds, then
1) A diagonal matrix S = diag(s1, s2, . . . , sN ) exists, such

that SAS has all nonnegative elements, where si ∈
{1,−1}, for all i ∈ V .

2) The Laplacian matrix associated with the corresponding
unsigned graph LS = SLS is positive semidefinite.

3) The eigenvalue λk(L), k = 1, 2, . . . , N of the Laplacian
matrix L satisfies 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN (L).

Remark 2.2: Under Assumption 2.1, we have 1T
NSL = 0. In

particular, if S = I , then the problem studied in this article is
reduced to the traditional consensus problem [32], [39]. Besides,
although we consider the undirected graph case here, it is not
difficult to extend it to the digraph case [5].

B. Problem Formulation

Consider a set of N agents coupled by an undirected signed
graph G. The dynamics of the ith agent are as follows:

xi(k + 1) = xi(k) + ui(k) (1)

where xi(k) ∈ R is the state of Agent i with initial value
xi(0), and ui(k) ∈ R is the control input. To achieve the
bipartite consensus of the system (1), [16] designs the fol-
lowing distributed controller: ui(k) = −

∑
j∈Ni

|aij |(xi(k)−
sgn(aij)xj(k)), where xj(k) is the information that Agent i
receives from its neighbors j.

In distributed bipartite consensus, eavesdroppers or honest-
but-curious (semihonest) agents may exist in the network [29],
[35]. Note that the honest-but-curious agents might collude and

attempt to deduce information about the initial state values of the
other honest agents from the information they receive. Eaves-
droppers are external adversaries who steal information through
wiretapping all communication channels and intercepting ex-
changed information between agents. An honest-but-curious
agent i has access to the internal state xi, which is unavail-
able to external eavesdroppers. However, an eavesdropper has
access to all shared information in the network, whereas an
honest-but-curious agent can only access the shared information
destined to it. These two attacker types are collectively called
passive attackers. If the network has passive attackers, then
delivering {xi(k)|k ≥ 0} directly for each agent may leak its
privacy, including the state xi(k) and the initial opinion or belief
xi(0). Therefore, direct communication of intermediate results
in the above controller can lead to severe privacy leakage of
each agent’s sensitive information. It is imperative to provide a
theoretical privacy guarantee on each agent’s sensitive informa-
tion. To do so, each agent i sends to its neighbors the masking
information yi(k) instead of the original information xi(k).

C. Differential Privacy

A mechanism M(·) is a stochastic map from a private dataset
D to an observation O. In this article, we focus on protecting
the initial states of each agent against passive attackers. Thus,
the private dataset is D = {xi(0), i ∈ V}, and the observation
is O = {yi(k), i ∈ V}Tk=0 with the time horizon T ≥ 1. Then,
we introduce the ε-differential privacy for the private dataset.

Definition 2.2 ([39]): Given δ > 0, the initial states D =
{xi(0), i ∈ V} and D′ = {x′

i(0), i ∈ V} are δ-adjacent if there
exists i0 ∈ V , such that

|xi(0)− x′
i(0)| ≤

{
δ, if i = i0;
0, if i �= i0.

Based on the above definition, inspired by [36] and [39], a
definition of differential privacy is given for the differentially
private bipartite consensus as follows.

Definition 2.3 (Differential privacy): Given δ > 0, a mech-
anism M(·) is ε-differentially private if P{M(D) ∈ O} ≤
eεP{M(D′) ∈ O} holds for any two δ-adjacent initial state sets
D = {xi(0), i ∈ V}, D′ = {x′

i(0), i ∈ V} and an observation
set O ⊆ (RN )N .

By Definition 2.3, the privacy level ε is nonnegative, and a
smaller ε corresponds to a stronger privacy protection.

Next, the mean-square average bipartite consensus, almost-
sure average bipartite consensus, and (m, r)-accuracy are de-
fined as follows, respectively.

Definition 2.4 (Mean-square average bipartite consensus):
The system (1) is said to achieve the mean-square average bipar-
tite consensus if there exists a random variable x� with Ex� =
1
N

∑N
i=1 sixi(0), E[x�]2 < ∞, such that limk→∞ E[xi(k)−

six
�]2 = 0, si ∈ {1,−1}, ∀ i ∈ V.

Definition 2.5 (Almost-sure average bipartite consensus):
The system (1) is said to achieve the almost-sure average bipar-
tite consensus if there exists a random variable x� with Ex� =
1
N

∑N
i=1 sixi(0), E[x�]2 < ∞, such that limk→∞ xi(k) =

six
�, si ∈ {1,−1}, ∀ i ∈ V.

Definition 2.6 (Accuracy): For m ∈ [0, 1] and r > 0, the
system (1) is said to achieve an (m, r)-accuracy, if the
mean-square and almost-sure average bipartite consensus is
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achieved, and the x� in Definition 2.4 (or 2.5) satisfies P{|x� −
1
N

∑N
i=1 sixi(0)| ≤ r} ≥ 1−m.

Problems of interest: In this article, the following questions
are answered:

1) How to design a more general privacy noise form for
average bipartite consensus to achieve a better privacy
protection with guaranteed convergence?

2) What are the mean-square and almost-sure convergence
rates under the influence of privacy noises?

3) How to design the distributed protocol ui(k) and privacy
noises for the desired accuracy (m�, r�) and predefined
differential privacy level ε�?

III. MAIN RESULT

This section first presents the convergence analysis, ensuring
that the mean-square and almost-sure average bipartite consen-
sus is achieved under certain conditions. In addition to the mean-
square and almost-sure convergence rates, the privacy analysis
is also given by introducing the definition of the sensitivity
on private datasets. Finally, we discuss the tradeoff between
accuracy and privacy, and extend the results to local differential
privacy.

A. Algorithm

This section introduces a differentially private bipartite con-
sensus algorithm, which is given in Algorithm 1.

Algorithm 1: A Differentially Private Bipartite Consensus
Algorithm.

Input: Initial state sequence {xi(0)}, step-size sequence
{α(k)}, and noise parameter sequence {b(k)}.

Output: State sequence {xi(k)}.
for k = 0, 1, . . ., do
• Information transmission: Each agent i generates a
privacy noise ωi(k) with distribution Lap(0, b(k)), and
sends to its neighbors the following information instead of
the original information xi(k):

yi(k) = xi(k) + ωi(k), i ∈ V, k ∈ N. (2)

• State update: Each agent i receives yj(k) from its
neighbor j and updates its own state by using the
following privacy-preserving distributed controller:

ui(k) = −α(k)
∑
j∈Ni

|aij |(xi(k)− sgn(aij)yj(k)) (3)

where α(k) is a positive time-varying step-size. Then,
each agent i updates its own state as follows:

xi(k + 1)=xi(k)−α(k)
∑
j∈Ni

|aij |(xi(k)−sgn(aij)yj(k)).

(4)

end for

Set

x(k) =
[
x1(k) x2(k) . . . xN (k)

]T

y(k) =
[
y1(k) y2(k) . . . yN (k)

]T
ω(k) =

[
ω1(k) ω2(k) . . . ωN (k)

]T
.

Then, (4) can be rewritten in a compact form as follows:

x(k + 1) = (IN − α(k)L)x(k) + α(k)Aω(k). (5)

Remark 3.1: In order to achieve the privacy protection, we
add noises to Agent i’s state before transmitting it to its neigh-
bors. Different from the existing literature, the privacy noises
added in (2) are more general. Specifically, the privacy noises
used in this article are random with variances of 2b2(k), which
are not required to decay to zero. Therefore, the state’s infor-
mation is not directly inferred with time. However, this brings
convergence difficulties with the corresponding privacy analysis
described next. Moreover, it is worth noting that we employ a
time-varying step-sizeα(k), making the controller more flexible
than that utilizing a constant step-size. Note that if α(k) is set
to constant, as in the current literature, the above closed-loop
system cannot achieve the convergence because of the influence
of privacy noises. To this end, we apply the stochastic approxi-
mation method to design a time-varying step-size.

B. Convergence Analysis

This section first proves that Algorithm 1 can achieve the
mean-square and almost-sure average bipartite consensus. Then,
we provide a method to design the step-size α(k) and the noise
parameter b(k) to ensure the (m�, r�)-accuracy.

For the step-size α(k) and the noise parameter b(k), we give
the following assumption.

Assumption 3.1: The step-size α(k) and the noise parameter
b(k) are positive and satisfy one of the following conditions:

a) supk α(k)≤ 1
λN (L) ,

∑∞
k=0 α(k) = ∞, limk→0 α(k)

b2(k) = 0;
b) supk α(k)≤ 1

λN (L) ,
∑∞

k=0 α(k) = ∞,
∑∞

k=0 α
2(k)

b2(k) < ∞.
Remark 3.2: Assumption 3.1 a) is weaker than

Assumption 3.1 b). For example, if we take α(k) =
a1

(k+a2)β
with a sufficiently small a1 and β ∈

[0, 1], and b(k) = (k + a2)
γ , then Assumption 3.1

a) holds when 2γ < β. Assumption 3.1 b) holds when
2γ < 2β − 1. Especially, when b(k) is a constant, Assump-
tion 3.1 becomes the commonly used stochastic approximation
step-size [7]. Furthermore, when the step-sizeα(k) is a constant,
and the privacy noises decay exponentially to zero [32], [39],
[40], [42], [43], [44], Assumption 3.1 still holds.

Remark 3.3: The step-sizeα(k) and the noise parameter b(k)
are assumed to be same for all agents in Algorithm 1. Its practical
implementation is an issue worth of attention. This issue can be
solved by implementing the following protocol before running
Algorithm 1. First, different a1,i, a2,i, βi, and γi are chosen
by the agents. Second, a consensus protocol (e.g., finite-time
average consensus protocol [8] or max-consensus protocol [12])
is applied to obtain the same a1, a2, β, and γ. Third, set α(k) =

a1

(k+a2)β
and b(k) = (k + a2)

γ .
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To get the convergence results, the following independence
assumption on the privacy noises is required.

Assumption 3.2: ωi(k) andωj(l) are independent when i �= j
or k �= l.

Theorem 3.1: If Assumptions 2.1, 3.1 a), and 3.2 hold, then
limk→∞ E[sixi(k)− sjxj(k)]

2 = 0, ∀ i, j ∈ V .
Proof: Let z(k) = Sx(k) and LS = SLS. Then, from (5)

and S−1 = S it follows that:

z(k + 1) = (IN − α(k)LS) z(k) + α(k)SAω(k). (6)

Let J = (1/N)1N1T
N , δ(k) = (IN − J)z(k) and V (k) =

‖δ(k)‖2. Note that 1T
NLS = 0. Then, LSJ = 0, and from (6)

we further have

δ(k + 1)

= (IN − J)z(k + 1)

= z(k)− α(k)LSz(k) + α(k)SAω(k)

− Jz(k)− α(k)JSAω(k)

= δ(k)− α(k)LSz(k) + α(k)(IN − J)SAω(k)

= [IN − α(k)LS ] δ(k) + α(k)(IN − J)SAω(k).

Note that Jδ(k) = 0. Then, we have

δ(k + 1)

= [IN − J − α(k)LS ] δ(k) + α(k)(IN − J)SAω(k). (7)

Since λ2(LS) = λ2(L) and λN (LS) = λN (L), from [7, The.
2.1], we have λ2(L)(IN − J) ≤ LS ≤ λN (L)(IN − J). Note
that supk α(k) ≤ 1

λN (L) . Then, IN − J − α(k)LS ≥ (1−
α(k)λN (L))(IN − J) ≥ 0. From (7), we have

V (k + 1)

≤ [1− α(k)λ2(L)]2 V (k)

+ 2α(k)δT (k) [IN − J − α(k)LS ]
T (IN − J)SAω(k)

+ α2(k)wT (k)ATST (IN − J)T (IN − J)SAω(k).

Define σ-algebra Fω
k = σ{ω(0), ω(1), ω(2), . . . , ω(k − 1)}.

Note that ω(k) is the zero-mean noise. Then, taking the con-
ditional expectation with respect to Fω

k on both sides of the
above equations, one can get

E [V (k + 1)|Fω
k ]

≤ [1− α(k)λ2(L)]2 V (k) + 2α2(k)b2(k)N‖A‖2. (8)

Note that E[E[V (k + 1)|Fω
k ]] = EV (k + 1). Then, taking

mathematical expectation on both sides of (8), we obtain

EV (k + 1)

≤ [1− α(k)λ2(L)]2 EV (k) + 2α2(k)b2(k)N‖A‖2

≤ EV (k)− α(k)λ2(L)EV (k) + 2α2(k)b2(k)N‖A‖2. (9)

Then, by [7, Lemma A.1], we have EV (k) = 0, which further
implies the result. �

Theorem 3.2: If Assumptions 2.1, 3.1 b), and 3.2 hold, then
Algorithm 1 achieves the mean-square average bipartite consen-

sus with Var(x�) =
2
∑

i∈V c2i
N2

∑∞
k=0 α

2(k)b2(k).
Proof: Since the graph is structurally balanced, from

Lemma 2.1, it follows that 1T
NLS = 0, and

1T
Nz(k) =

(
1T
N (IN − α(k − 1)LS)

)
z(k − 1)

+ α(k − 1)
(
1T
NSA

)
ω(k − 1)

= 1T
Nz(k − 1) + α(k − 1)

(
1T
NSA

)
ω(k − 1). (10)

By iteration, we have

1T
Nz(k) =

∑
i∈V

zi(0) +

k∑
j=1

α(j − 1)
(
1T
NSA

)
ω(j − 1) (11)

which immediately follows that:

lim
k→∞

1T
Nz(k) =

∑
i∈V

zi(0) +
∞∑
j=1

∑
i∈V

α(j − 1)siciωi(j − 1).

By Theorem 3.1, set

x� =
1

N

∑
i∈V

zi(0) +
1

N

∞∑
j=1

∑
i∈V

α(j − 1)siciωi(j − 1).

Then, we have

lim
k→∞

√
E [sixi(k)− x�]2

≤ lim
k→∞

√
E

[
sixi(k)−

1

N
1T
Nz(k)

]2

+ lim
k→∞

√
E

[
1

N
1T
Nz(k)− x�

]2
= 0.

By the fact that ωi(k) are independent for all i ∈ V , k ∈ N, it is
obtained that

Ex� = E

⎡
⎣ 1

N

∑
i∈V

zi(0) +
1

N

∞∑
j=0

∑
i∈V

α(j)siciωi(j)

⎤
⎦

=
1

N

∑
i∈V

zi(0) =
1

N

∑
i∈V

sixi(0)

and

Var (x�) =
1

N2

∞∑
j=0

∑
i∈V

α2(j)E [siciωi(j)]
2

=
2
∑

i∈V c
2
i

N2

∞∑
k=0

α2(k)b2(k). (12)

Since
∑∞

k=0 α
2(k)b2(k) < ∞, Var(x�) is bounded. �

Remark 3.4:
∑∞

k=0 α
2(k)b2(k) < ∞ is necessary for a finite

E[x�]2. Otherwise, when
∑∞

k=0 α
2(k)b2(k) = ∞, one can get

Var(x�) = ∞ by (12).
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The almost-sure convergence properties are important, be-
cause they represent what happen to individual trajectories of
the stochastic iterations, which are instantiations of the algo-
rithm actually used in practice. From the following theorem,
the almost-sure average bipartite consensus of Algorithm 1 is
achieved as well under Assumptions 2.1 and 3.1.

Theorem 3.3: If Assumptions 2.1, 3.1 b), and 3.2 hold, then
Algorithm 1 achieves the almost-sure average bipartite consen-
sus.

Proof: From (8), it follows that:

E [V (k + 1)|Fω
k ]

≤ V (k)− α(k)λ2(L)V (k) + 2α2(k)b2(k)N‖A‖2.

Notice that
∑∞

k=0 α
2(k)b2(k) < ∞. Then, by Lemma A.1,

V (k) converges almost-surely, and
∑∞

k=0 α(k)V (k) < ∞
almost-surely. Since

∑∞
k=0 α(k) = ∞, V (k) converges to 0

almost-surely.
By (11), 1

N

∑N
i=1 zi(k) =

1
N 1


Nzi(k) is a martingale. By
Assumption 3.1, we have

E

∥∥∥∥∥∥
k∑

j=1

α(j − 1)
(
1T
NSA

)
ω(j − 1)

∥∥∥∥∥∥
2

≤ 2
∥∥1T

NSA
∥∥2 k∑

j=1

α2(j − 1)b2(j − 1) < ∞

which implies that E[ 1N
∑N

i=1 zi(k)]
2 < ∞. This together with

[46, Th. 7.6.10 and Th. 3.2] implies that 1
N

∑N
i=1 zi(k) con-

verges to x� almost-surely. Since V (k) converges to 0 almost-
surely, we have zi(k) converges to 1

N

∑N
i=1 zi(k) almost-

surely. �
Remark 3.5: By assuming that the graph is structurally bal-

anced, the mean-square and almost-sure average bipartite con-
sensus of Algorithm 1 is achieved. The results can be extended
to the case where the graph is structurally unbalanced and
the weighted adjacency matrix A satisfies the signed Perron–
Frobenius property [19]. In this case, there exists t0 > 0 such
that At0 is the weighted adjacency matrix of a structurally
balanced graph. The existence of t0 is ensured by [19, Th 2 ].
In Algorithm 1, instead of (3), each agent updates its own state
by using ui(k) = −α(k)

∑
j∈Ni

|aij |(xi(k)− sgn(aij)ỹj(k)),
where ỹj(k) is the jth component of At0−1y(k). Similar to the
proof of Theorems 3.1–3.3, the mean-square and almost-sure
average bipartite consensus of the modified algorithm for the
structurally unbalanced graph can be achieved.

Remark 3.6: Theorems 3.1–3.3 give a unified framework of
the consensus analysis under different types of step-sizes α(k)
and noise parameters b(k), including the decaying α(k) and
constant b(k) considered in [7], [41], the constant α(k) and
exponentially decaying b(k) considered in [32], [39], [40], [42],
[43], [44], and the decaying α(k) and increasing b(k).

The following theorem provides a way to design the step-
size α(k) and the noise parameter b(k) to ensure the (m�, r�)-
accuracy.

Theorem 3.4: Under Assumptions 2.1, 3.1 b), and 3.2, for any
given a pair of parameters (m�, r�), if

∞∑
k=0

α2(k)b2(k) ≤ m�(r�)2 N2

2
∑

i∈V c
2
i

then Algorithm 1 achieves the (m�, r�)-accuracy.
Proof: From the Chebyshev’s inequality [46] it follows that:

P

{
(x� − Ex�)2

Var(x�)
< ε

}
≥ 1− 1

ε
.

Taking (12) into the above inequality yields P{|x� − Ex�| <
√
εκ} ≥ 1− 1

ε , where κ =
2
∑

i∈V c2i
N2

∑∞
k=0 α

2(k)b2(k).

Set r =
√
εκ. Then, ε = r2

κ and P{|x� − Ex�| < r} ≥ 1−
κ
r2 . Therefore, the (m, r)-accuracy is achieved with m=
2
∑

i∈V c2i
N2r2

∑∞
k=0 α

2(k)b2(k).

Clearly, as long as
∑∞

k=0 α
2(k)b2(k) ≤ m�(r�)2 N2

2
∑

i∈V c2i
, the

(m�, r�)-accuracy is ensured. �
Next, we further analyze the (m�, r�)-accuracy of Algo-

rithm 1 with α(k) = a1

(k+a2)β
and b(k) = b(k + a2)

γ .
Corollary 3.1: Under Assumption 2.1, for any given a pair

of parameters (m�, r�), set α(k) = a1

(k+a2)β
and b(k) = b(k +

a2)
γ , β ∈ (0, 1], γ < β − 1/2, a1, a2, b > 0, such that

a21b
2a2γ−2β+1

2

2β − 2γ − 1
+ a21b

2a2γ−2β
2 ≤ m�(r�)2 N2

2
∑

i∈V c
2
i

. (13)

Then, Algorithm 1 achieves the (m�, r�)-accuracy.
Proof: By the fact that f(x) = a1b(x+a2)

γ

(x+a2)β
with β ∈ (0, 1],

γ < β − 1/2, a1, a2, b > 0, is a strictly decreasing function of
x > 0. Then, for k ≥ 1, we have(

a1b(k + a2)
γ

(k + a2)β

)2

≤
∫ k

k−1

(
a1b(x+ a2)

γ

(x+ a2)β

)2

dx

and thus,

∞∑
k=0

α2(k)b2(k)

= a21b
2a2γ−2β

2 +

∞∑
k=1

(
a1b(k + a2)

γ

(k + a2)β

)2

≤ a21b
2a2γ−2β

2 +

∫ ∞

0

(
a1b(x+ a2)

γ

(x+ a2)β

)2

dx

≤ − a21b
2a2γ−2β+1

2

2γ − 2β + 1
+ a21b

2a2γ−2β
2

≤ m�(r�)2 N2

2
∑

i∈V c
2
i

.

�
Under the time-varying noises, the predefined accuracy is

ensured by properly selecting the step-size α(k) and the noise
parameter b(k), k ∈ N. Besides, we can enhance the accuracy
by optimizing

∑∞
k=0 α

2(k)b2(k).

C. Convergence Rate

In this section, we analyze the mean-square and almost-sure
convergence rates of Algorithm 1. Regarding the algorithm’s
step-size and noise parameter, we give a step-size form α(k) =

a1

(k+a2)β
and the noise parameter b(k) = O(kγ). First, we give

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on August 29,2024 at 02:36:44 UTC from IEEE Xplore.  Restrictions apply. 



5794 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024

the mean-square convergence rate of Algorithm 1 with α(k) =
a1

(k+a2)β
and b(k) = O(kγ).

Theorem 3.5: Suppose Assumptions 2.1 and 3.2 hold. Let
the step-size α(k) = a1

(k+a2)β
, b(k) = O(kγ), β ∈ (0, 1], γ <

β − 1
2 , a1, a2 > 0. Then, the mean-square convergence rate of

Algorithm 1 is given as follows.
When β ∈ (0, 1), for all i ∈ V , we have

E [xi(k)− six
�]2 = O

(
k1+2γ−2β

)
. (14)

When β = 1, for all i ∈ V , we have

E [xi(k)− six
�]2

=

⎧⎪⎨
⎪⎩
O
(
k−2a1λ2(L)

)
, γ + a1λ2(L) < 1/2

O
(
k2γ−1 ln k

)
, γ + a1λ2(L) = 1/2

O
(
k2γ−1

)
, γ + a1λ2(L) > 1/2.

(15)

Proof: For analyzing the mean-square convergence rate of
Algorithm 1, we do it in the following three steps.

Step 1: We give the mean-square convergence rate
of sixi(k)− 1

N 1T
Nz(k). When α(k) = a1

(k+a2)β
and b(k) =

O(kγ), β ∈ (0, 1], γ < β − 1
2 , there exists 
 > 0 such that

2α2(k)b2(k)N‖A‖2 ≤ 


(k + a2)2β−2γ
. (16)

Note that there exists a sufficiently large k0 > 0 such that 1−
2a1λ2(L)
(k+a2)β

> 0 for all k > k0. Then, from (9) and (16) it follows
that:

EV (k + 1) ≤
(
1− 2a1λ2(L)

(k + a2)β
+

a21λ
2
2(L)

(k + a2)2β

)
EV (k)

+



(k + a2)2β−2γ
, as k > k0.

Iterating the above process gives

EV (k + 1)

≤
k∏

t=k0

(
1− 2a1λ2(L)

(t+ a2)β
+

a21λ
2
2(L)

(t+ a2)2β

)
EV (k0)

+

k−1∑
l=k0

k∏
t=l+1

(
1− 2a1λ2(L)

(t+ a2)β
+

a21λ
2
2(L)

(t+ a2)2β

)



(l + a2)2β−2γ

+



(k + a2)2β−2γ
. (17)

When β = 1, from Lemma A.2 and (17) it follows that:

EV (k + 1)

= O

(
1

(k + a2)2a1λ2(L)

)
+O

(
1

(k + a2)2−2γ

)

+O

(
1

(k + a2)2a1λ2(L)

k−1∑
l=k0

1

(l + a2)2−2γ−2a1λ2(L)

)
.

Note that
k−1∑
l=k0

1

(l + a2)2−2γ−2a1λ2(L)

≤
∫ k

k0−1

1

(x+ a2)2−2γ−2a1λ2(L)
dx.

Then, we have

EV (k + 1)

=

⎧⎨
⎩
O
(
(k + a2)

−2a1λ2(L)
)
, γ + a1λ2(L) < 1/2

O
(
(k + a2)

2γ−1 ln k
)
, γ + a1λ2(L) = 1/2

O
(
(k + a2)

2γ−1
)
, γ + a1λ2(L) > 1/2.

(18)

When 0 < β < 1, there exists a sufficiently large k1 ≥ k0

such that for all k ≥ k1, − 2a1λ2(L)
(k+a2)β

+
a2
1λ2

2(L)
(k+a2)2β

≤ − a1λ2(L)
(k+a2)β

.

Note that
(
1− a1λ2(L)

(l+a2)β

)−1

≤ 2 for all l ≥ k1. Then, from

Lemma A.2 and (17) it follows that:

EV (k + 1)

≤
k∏

t=k1

(
1− a1λ2(L)

(t+ a2)β

)
EV (k1) +




(k + a2)2β−2γ

+ 2
k−1∑
l=k1

k∏
t=l

(
1− a1λ2(L)

(t+ a2)β

)



(l + a2)2β−2γ

= O

(
exp

(
−a1λ2(L)

1− β
(k + a2 + 1)1−β

))

+O

(
1

(k + a2)2β−2γ

)

+O

(
k−1∑
l=k1

exp

(
−a1λ2(L)

1− β
(k + a2 + 1)1−β

)

· exp
(
a1λ2(L)
1− β

(l + a2)
1−β

)



(l + a2)2β−2γ

)
. (19)

Note that β−2γ
a1λ2(L)(l+a2)1−β < 1

2 for all l ≥ k1. Then, we have

k−1∑
l=k1

exp

(
a1λ2(L)
1− β

(l + a2)
1−β

)



(l + a2)2β−2γ

≤
∫ k

k1

exp

(
a1λ2(L)
1− β

(l + a2)
1−β

)



(l + a2)2β−2γ
dl

=
1

a1λ2(L)

∫ k

k1




(l + a2)β−2γ
d

(
exp

(
a1λ2(L)
1− β

(l+a2)
1−β

))

≤ 1

a1λ2(L)



(k + a2)β−2γ
exp

(
a1λ2(L)
1− β

(k + a2)
1−β

)

+
1

2

∫ k

k1

exp

(
a1λ2(L)
1− β

(l + a2)
1−β

)



(l + a2)2β−2γ
dl.

Furthermore, we have

k−1∑
l=k1

exp

(
a1λ2(L)
1− β

(l + a2)
1−β

)



(l + a2)2β−2γ

= O

(
1

(k + a2)β−2γ
exp

(
a1λ2(L)
1− β

(k + a2)
1−β

))
.
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From (19), it follows that:

EV (k + 1)

= O

(
1

(k + a2)2β−2γ

)

+O

(
exp

(
−a1λ2(L)

1− β
(k + a2 + 1)1−β

)

· 1

(k + a2)β−2γ
exp

(
a1λ2(L)
1− β

(k + a2)
1−β

))

= O
(
(k + a2)

2γ−β
)
. (20)

Step 2: We give the mean-square convergence rate of 1
N

1T
Nz(k)− x�. From (11), it follows that:

E

[
1

N
1T
Nz(k)− x�

]2
=

2
∑

i∈V c
2
i

N2

∞∑
j=k+1

α2(j)b2(j)

= O

⎛
⎝ ∞∑

j=k+1

1

(j + a2)2β−2γ

⎞
⎠ .

Note that γ < β − 1
2 and

∑∞
j=k+1

1
(j+a2)2β−2γ ≤

∫∞
k

1
(x+a2)2β−2γ dx. Then, we have

E

[
1

N
1T
Nz(k)− x�

]2
= O

(
(k + a2)

1+2γ−2β
)
. (21)

Step 3: We give the mean-square convergence rate of Algorithm
1. Note that

E [xi(k)− six
�]2

= E

[
sixi(k)−

1

N
1T
Nz(k) +

1

N
1T
Nz(k)− x�

]2

≤ 2E

[
sixi(k)−

1

N
1T
Nz(k)

]2
+2E

[
1

N
1T
Nz(k)−x�

]2
.(22)

Then, when β = 1, from (18), (21), and (22) it follows that (15)
holds; when 0 < β < 1, from (20), (21), and (22) it follows that
(14) holds. �

In the following, we give the almost-sure convergence rate of
Algorithm 1 with α(k) = a1

(k+a2)β
and b(k) = O(kγ).

Theorem 3.6: Suppose Assumptions 2.1 and 3.2 hold. Let
the step-size α(k) = a1

(k+a2)β
, b(k) = O(kγ), β ∈ (0, 1], γ <

β − 1/2, a1, a2 > 0. Then, the almost-sure convergence rate of
Algorithm 1 is given as follows.

When β ∈ (0, 1), for any η ∈ ( 14 ,
β/2−γ
1−β ) and all i, j ∈ V , we

have

sixi(k)− sjxj(k) = O
(
kγ+η−(η+1/2)β

)
, a.s. (23)

When β = 1, for all i, j ∈ V , we have

sixi(k)− sjxj(k)

=

⎧⎪⎪⎨
⎪⎪⎩
O
(
kγ−1/2

√
ln ln k

)
, a1λ2(L)+γ>1/2;

O
(
kγ−1/2

√
ln k ln ln ln k

)
, a1λ2(L)+γ=1/2;

O
(
k−a1λ2(L)

)
, a1λ2(L)+γ<1/2.

a.s.

(24)

Proof: As clarified in Theorem 3.1, it is equivalent to cal-
culating the convergence rate of δ(k) = z(k)− Jz(k), where
z(k) and J are defined in Theorem 3.1.

Note that

‖δ(k)‖ = sup
‖v‖=1

|vT δ(k)|

= sup
p2‖e‖2+Nq2=1

eT 1=0

|(pe+ q1)T δ(k)|

= sup
p2‖e‖2+Nq2=1

eT 1=0

|peT z(k)|

= sup
‖e‖=1
eT 1=0

|eT z(k)|

and there exists e1, . . . , eN−1 such that eTi ej = 0 for i �= j,
‖ei‖ = 1 and eTi 1 = 0 for i = 1, 2, . . . , N − 1. Then, we have

sup
‖e‖=1
eT 1=0

|eT z(k)| = sup
∑N−1

i=1 p2
i=1

N−1∑
i=1

|pi||eTi z(k)|

≤ sup
∑N−1

i=1 p2
i=1

√√√√N

N−1∑
i=1

|pi|2 max
i

|eTi z(k)|

=
√
N max

i
|eTi z(k)|.

Set

D̃ =
[
e1 · · · eN−1

]T
, D =

[
e1 · · · eN−1

1√
N

]T
.

Then, to calculate the convergence rate of δ(k), it suffices to
analyze that of D̃z(k).

From the properties of ei, we have DTD = IN . Let L̃ =
D̃LSD̃T . Then, DLSDT = diag(L̃, 0) and λmin(L̃) = λ2(L).

From α(k) = a1

(k+a2)β
and (6), it follows that:

z(k + 1)

=

(
IN − a1

(k + a2)β
LS

)
z(k) +

a1b(k)

(k + a2)β
SAω(k)

b(k)
.

Hence, we have

Dz(k + 1)

=

(
IN − a1

(k + a2)β
DLSDT

)
Dz(k)

+
a1b(k)

(k + a2)β
DSAω(k)

b(k)

=

[
IN−1− a1

(k+a2)β
L̃ 0

0 1

]
Dz(k)+

a1b(k)

(k + a2)β
DSAω(k)

b(k)
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which implies

D̃z(k + 1)

=

(
IN−1−

a1
(k + a2)β

L̃
)
D̃z(k)+

a1b(k)

(k + a2)β
D̃SAω(k)

b(k)
.

Iterating the above equation results in

D̃z(k)

=

k−1∑
l=0

k−1∏
i=l+1

(
IN−1−

a1
(i+ a2)β

L̃
)

a1b(l)

(l + a2)β
D̃SAw(l)

b(l)

+

k−1∏
i=0

(
IN−1−

a1
(i+ a2)β

L̃
)
D̃z(0). (25)

Note that when 0 < β < 1, by Lemma A.2, we have

k−1∏
i=l+1

∥∥∥∥IN−1 −
a1

(i+ a2)β
L̃
∥∥∥∥

≤
k−1∏

i=l+1

(
1− a1λ2(L)

(i+ a2)β

)

= O

(
exp

(
a1λ2(L)
1− β

(
(l + a2)

1−β−(k + a2)
1−β
)))

. (26)

According to the [47, Lemma 2] and Lemma A.3, for any
η > 1

4 , we have

k−1∑
l=0

exp

(
a1λ2(L)
1− β

(l + a2)
1−β

)
a1b(l)

(l + a2)β
D̃SAw(l)

b(l)

= O

(
k−1∑
l=0

exp

(
a1λ2(L)
1− β

(l + a2)
1−β

)
a1D̃SA

(l + a2)β−γ

w(l)

b(l)

)

= O

(
exp

(
a1λ2(L)
1− β

(k + a2)
1−β

)
(k + a2)

γ+η−(η+1/2)β

)
.

a.s. (27)

Substituting (26) and (27) into (25) gives D̃z(k) =
O(kγ+η−(η+1/2)β).

When β = 1, by Lemma A.2, we have

k−1∏
i=l+1

∥∥∥∥IN−1 −
a1

i+ a2
L̃
∥∥∥∥ ≤

k−1∏
i=l+1

(
1− a1λ2(L)

i+ a2

)

= O

((
l + a2
k + a2

)a1λ2(L)
)
. (28)

According to [47, Lemma 2], one can get

1

(k + a2)a1λ2(L)

k−1∑
l=0

a1b(l)

(l + a2)1−a1λ2(L)
D̃SAw(l)

b(l)

= O

(
1

(k + a2)a1λ2(L)

k−1∑
l=0

a1D̃SA
(l + a2)1−γ−a1λ2(L)

w(l)

b(l)

)

=

⎧⎪⎪⎨
⎪⎪⎩
O
(
kγ−1/2

√
ln ln k

)
, a1λ2(L) + γ > 1/2;

O
(
kγ−1/2

√
ln k ln ln ln k

)
, a1λ2(L) + γ = 1/2;

O
(
k−a1λ2(L)

)
, a1λ2(L) + γ < 1/2.

a.s.

(29)

Substituting (28) and (29) into (25) gives

D̃z(k)

=

⎧⎪⎪⎨
⎪⎪⎩
O
(
kγ−1/2

√
ln ln k

)
, a1λ2(L) + γ > 1/2;

O
(
kγ−1/2

√
ln k ln ln ln k

)
, a1λ2(L) + γ = 1/2;

O
(
k−a1λ2(L)

)
, a1λ2(L) + γ < 1/2.

a.s.

�
Remark 3.7: Theorems 3.5 and 3.6 show that the algorithm’s

convergence rate will slow down when the privacy noise parame-
ter γ increases. This is because the increase of the privacy noises
enhances data randomness, and thus, worsens the convergence
rate of the algorithm.

Remark 3.8: In distributed systems, communication imper-
fections can be modeled as communication noises [7], [9], [10],
[11], and can be regarded as a special case of differential privacy-
noises considered here. Therefore, Algorithm 1 can also be
used to counteract communication imperfections in distributed
computation. The proof techniques of mean-square and almost-
sure convergence rates are fundamentally different from existing
counterparts (e.g. [7], [9], [10], [11]) and are of independent
interest in themselves. To the best of our knowledge, even
without considering privacy protection, it is the first to rigorously
characterize both the mean-square and almost-sure convergence
rates of distributed consensus with increasing noises.

D. Privacy Analysis

This section demonstrates that Algorithm 1 is ε-differentially
private on dataset D = {xi(0), i ∈ V}. Before giving the pri-
vacy analysis, we first introduce the definition of sensitivity. For
a private dataset D and an observation O = {yi(k), i ∈ V}Tk=0,
there exists a sequence of noises {ωi(k), i ∈ V}Tk=0 and trajec-
tories ρ(D,O) = {xD,O

i (k), i ∈ V}Tk=0. Below we first give the
sensitivity of Algorithm 1.

Definition 3.1 (Sensitivity): The sensitivity with respect to a
randomized mechanism M at time k ≥ 0 is given as follows.

S(k) = sup
D,D′∈D,O∈O

‖ρ(D,O)(k)− ρ(D′, O)(k)‖1.

Sensitivity is a measure of the difference of two trajectories
induced by changing the private dataset.

Theorem 3.7: Suppose Assumptions 2.1 and 3.2 hold. Then,
the sensitivity of Algorithm 1 satisfies

S(k) ≤
{
δ, k = 0;∏k−1

l=0 (1− α(l)cmin)δ, k ≥ 1.
(30)

Proof: Denote P = {ρ(D,O) : O ∈ O} and P′ =
{ρ(D′, O) : O ∈ O} as the sets of possible trajectories under
the controller (3) w.r.t. D and D′ in the observation set O,
and the trajectories subject to the probability density functions
f(D, ρ(D,O)) and f(D′, ρ(D′, O)), respectively. Based on the
controller (3), we have

xD,O
i (k) = (1− α(k − 1)ci)x

D,O
i (k − 1)
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+ α(k − 1)
∑
j∈Ni

|aij |sgn(aij)yj(k − 1).

Similarly, for D′ we have

xD′,O
i (k) = (1− α(k − 1)ci)x

D′,O
i (k − 1)

+ α(k − 1)
∑
j∈Ni

|aij |sgn(aij)yj(k − 1).

Since observations O = {yi(k − 1), i ∈ V} for D and D′ are
the same, we have

xD′,O
i (k)− xD,O

i (k)

= (1− α(k − 1)ci)
(
xD′,O
i (k − 1)− xD,O

i (k − 1)
)

=

k−1∏
l=0

(1− α(l)ci)
(
xD′,O
i (0)− xD,O

i (0)
)
.

Thus, it follows that for k = 0

‖ρ(D,O)(k)− ρ(D′, O)(k)‖1

=
∑
i∈V

∣∣∣xD′,O
i (0)− xD,O

i (0)
∣∣∣ ≤ δ (31)

which implies that S(0) ≤ δ, and for k ≥ 1

‖ρ(D,O)(k)− ρ(D′, O)(k)‖1

=
∑
i∈V

∣∣∣xD′,O
i (k)− xD,O

i (k)
∣∣∣

=
∑
i∈V

(
k−1∏
l=0

(1− α(l)ci)

)∣∣∣xD′,O
i (0)− xD,O

i (0)
∣∣∣

≤
(

k−1∏
l=0

(1− α(l)cmin)

)∑
i∈V

∣∣∣xD′,O
i (0)− xD,O

i (0)
∣∣∣

≤
(

k−1∏
l=0

(1− α(l)cmin)

)
δ. (32)

Thus, S(k) ≤
∏k−1

l=0 (1− α(l)cmin)δ for k ≥ 1. �
Next, we calculate the algorithm’s differential privacy level ε.
Theorem 3.8: Suppose Assumptions 2.1 and 3.2 hold. Then,

Algorithm 1 is ε-differentially private over the time horizon T
with

ε =
T∑

k=0

S(k)

b(k)
. (33)

Proof: Recall that P={ρ(D,O) : O ∈ O} and P′=
{ρ(D′, O) : O ∈ O} are the sets of possible trajectories under
the controller (3) w.r.t. D and D′ in the observation set O,
and the trajectories subject to the probability density functions
f(D, ρ(D,O)) and f(D′, ρ(D′, O)), respectively. Then, it is
obtained that

P [M(D) ∈ O]

P [M(D′) ∈ O]
=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

ρ(D′,O)∈P′ f (D′, ρ(D′, O)) dτ ′
.

Let T = {0, 1, 2, . . . , T} and W = V × T . Then, the proba-
bility density functions f(D, ρ(D,O)) over the time horizon T

are expressed as

f(D, ρ(D,O))

=
∏

i∈V, k∈T
f(D, ρ(D,O)i(k − 1))

=
∏

(i,k)∈W

1

2b(k)
exp

(
−|ρ(D,O)i(k)−yi(k)|

b(k)

)
. (34)

As they have the same observation over the time horizon
T , there exists a bijection g(·):P → P′, such that for any
pair of ρ(D,O) ∈ P and ρ(D′, O) ∈ P′, it has g(ρ(D,O)) =
ρ(D′, O). From the rationale of yi(k) = xi(k) + ωi(k),
ωi(k) ∼ Lap(0, b(k)), and the observations O = {yi(k), i ∈
V}Tk=0, by (34) we have

P [M(D) ∈ O]

P [M(D′) ∈ O]

=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

g(ρ(D,O))∈P′ f (D′, g(ρ(D,O))) dτ

=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

ρ(D,O)∈P f (D′, g(ρ(D,O))) dτ

=
∏

(i,k)∈W
exp

(
−|ρ(D,O)i(k)− yi(k)|

b(k)

+
|ρ(D′, O)i(k)− yi(k)|

b(k)

)

≤
∏

(i,k)∈W
exp

⎛
⎝
∣∣∣xD′,O

i (k)− xD,O
i (k)

∣∣∣
b(k)

⎞
⎠

which together with (32) leads to

P [M(D) ∈ O]

P [M(D′) ∈ O]

= exp

⎛
⎝∑

k∈T

∑
i∈V

∣∣∣xD′,O
i (k)− xD,O

i (k)
∣∣∣

b(k)

⎞
⎠

≤ exp

(
T∑

k=0

S(k)

b(k)

)
.

Hence, we can obtain that ε =
∑T

k=0
S(k)
b(k) . �

Remark 3.9: Theorem 3.8 shows that the differential privacy
level ε is effected by the step-sizes α(k) and the noise parameter
b(k). According to (33), a larger α(k) implies a smaller ε, which
further implies a stronger privacy-preserving ability. Similarly, a
larger b(k) implies a smaller ε, which further implies a stronger
privacy-preserving ability.

Next, we focus on how to design the time-varying step-size
α(k) and the noise parameter b(k) to satisfy the predefined ε�-
differential privacy over the infinite time horizon.

Theorem 3.9: Suppose Assumptions 2.1 and 3.2 hold. Let
the step-size α(k) = a1

(k+a2)β
, b(k) = b(k + a2)

γ , a1, a2, b >
0, a1cmin + γ > 1. Then, for any given ε� > 0, Algorithm 1
achieves the ε�-differential privacy in the following four cases:
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1) β = 1, γ ≥ 0, and

2δ

baγ2
+

δa1−γ
2

b(a1cmin + γ − 1)
≤ ε�; (35)

2) β = 1, γ < 0, and

2δ

b(1 + a2)γ
+

δ(1 + a2)
−γa2

b(a1cmin + γ − 1)
≤ ε�; (36)

3) 0 < β < 1, γ ≥ 0, and

δ

baγ2
+

δ exp
(

a1cmin

1−β a1−β
2

)
b(1− β)

(
1− β

a1cmin

) 1−γ
1−β

· Γ
(
1− γ

1− β
,
a1cmina

1−β
2

1− β

)
≤ ε�; (37)

4) 0 < β < 1, γ < 0, and

2δ

b(1 + a2)γ
+

δ exp
(

a1cmin

1−β a1−β2

)
b(1− β)

(
1−β

a1cmin

) 1−γ
1−β

· Γ
(
1− γ

1− β
,
a1cmin(1 + a2)

1−β

1− β

)
≤ ε�.

(38)

Proof: From Theorem 3.7 and substituting α(k) = a1

(k+a2)β

into (30), we have

S(k) ≤
{
δ, k = 0;∏k−1

l=0

(
1− a1cmin

(l+a2)β

)
δ, k ≥ 1.

Notice that S(0) = δ. Then, one can get

ε = sup
T

εT =
∞∑

k=0

S(k)

b(k)
=

δ

baγ2
+

∞∑
k=1

S(k)

b(k)
≤ ε�.

Thus, it suffices to analyze
∑∞

k=1
S(k)
b(k) . The following analysis

is undertaken according to four cases.
Case 1: β = 1 and γ ≥ 0.
From (30) and Lemma A.2, it follows that:

∞∑
k=1

S(k)

b(k)
=

∞∑
k=1

∏k−1
l=0

(
1− a1cmin

(l+a2)β

)
δ

b(k)

≤
∞∑

k=1

δaa1cmin
2

b(k)(k − 1 + a2)a1cmin

≤ δ

b(1 + a2)γ
+

∫ ∞

1

δaa1cmin
2

b(x− 1 + a2)a1cmin+γ
dx

≤ δ

b(1 + a2)γ
+

δa1−γ
2

b(a1cmin + γ − 1)
.

Case 2: β = 1 and γ < 0.
From (30) and Lemma A.2, it follows that:

∞∑
k=1

S(k)

b(k)
≤

∞∑
k=1

δaa1cmin
2

b(k)(k − 1 + a2)a1cmin
.

Note that supx∈[1,∞)

(
x+a2

x−1+a2

)−γ

=
(

1+a2

a2

)−γ

, for anyγ <

0. Then,

∞∑
k=1

S(k)

b(k)

≤ δ

b(1 + a2)γ
+

(
1 + a2
a2

)−γ ∫ ∞

1

δaa1cmin
2

b(x− 1 + a2)a1cmin+γ
dx

≤ δ

b(1 + a2)γ
+

δ(1 + a2)
−γa2

b(a1cmin + γ − 1)
.

Case 3: 0 < β < 1 and γ ≥ 0.
From Lemma A.2, it follows that:

∞∑
k=1

S(k)

b(k)
≤

∞∑
k=1

δ

b
(k + a2)

−γ exp

(
a1cmin

1− β
a1−β
2

− a1cmin

1− β
(k + a2)

1−β

)
.

Further, when γ ≥ 0, by Lemma A.4, we have

∞∑
k=1

S(k)

b(k)

≤ exp

(
a1cmin

1− β
a1−β
2

)∫ ∞

1

δ

b
(x+ a2 − 1)−γ

· exp
(
−a1cmin

1− β
(x+ a2 − 1)1−β

)
dx

=
δ exp

(
a1cmin

1−β a1−β
2

)
b(1− β)

(
1− β

a1cmin

) 1−γ
1−β

· Γ
(
1− γ

1− β
,
a1cmina

1−β
2

1− β

)
. (39)

Case 4: 0 < β < 1 and γ < 0.
From Lemma A.2, it follows that:

∞∑
k=1

S(k)

b(k)
≤

∞∑
k=1

δ

b
(k + a2)

−γ exp

(
a1cmin

1− β
a1−β
2

− a1cmin

1− β
(k + a2)

1−β

)
.

Set g(x) = (x+ a2)
−γ exp

(
−a1cmin

1−β (x+ a2)
1−β
)
. Then,

we have

g′(x) = (x+ a2)
−γ−1 exp

(
−a1cmin

1− β
(x+ a2)

1−β

)

·
(
−γ − a1cmin(x+ a2)

1−β
)
.

Note that a1cmin + γ > 1. Then, −γ − a1cmin(x+
a2)

1−β < −1, for any x ≥ 1, which implies that g(x) decreases
monotonically in [1,∞). Thus, by Lemma A.4, we can get

∞∑
k=2

(k + a2)
−γ exp

(
−a1cmin

1− β
(k + a2)

1−β

)
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≤
∫ ∞

1

(x+ a2)
−γ exp

(
−a1cmin

1− β
(x+ a2)

1−β

)
dx

=
1

(1− β)

(
1− β

a1cmin

) 1−γ
1−β

Γ

(
1− γ

1− β
,
a1cmin(1 + a2)

1−β

1− β

)
.

Thus, (38) holds. �
Remark 3.10: Theorem 3.9 provides an upper bound of the

differential privacy level ε when the step-size α(k) and the noise
parameter b(k) are designed in a certain form. From (30), (33),
and (35)–(38), increasing β has the same effect as decreasing γ
on both the differential privacy level ε and the obtained boundary.
Moreover, it is known that ε decreases as γ increases (or b,
a2 increase). Similarly, the obtained boundary decreases as γ
increases (or b, a2 increase).

Remark 3.11: Since the step-size does not change S(0), ε >
δ

baγ
2

is required regardless of the step-size. For any given ε� >
δ

baγ
2

, as long as a1 or b is sufficiently large, it can always be
ε ≤ ε�.

E. Tradeoff Between Accuracy and Privacy

From Theorems 3.5, 3.6, and 3.9, we observe that the in-
fluence of the privacy noises on the convergence rate and the
privacy level of Algorithm 1 is different. Specifically, when the
privacy noise parameter γ increases, the convergence rate of
the algorithm will slow down, but the privacy of the algorithm
will be enhanced. This is because the increase of the privacy
noises enhances data randomness, leading to a worse conver-
gence rate and more robust privacy of the algorithm. In the
following, we give sufficient conditions for the mean-square
average bipartite consensus and differential privacy with a finite
privacy level ε over the infinite time horizon simultaneously.

Corollary 3.2: Suppose Assumptions 2.1 and 3.2 hold. Let
the step-size α(k) = a1

(k+a2)β
, b(k) = b(k + a2)

γ , a1, a2, b >

0. If β ∈ (0, 1], γ < β − 1
2 and a1cmin + γ > 1, then the mean-

square average bipartite consensus and differential privacy with
a finite privacy level ε over the infinite time horizon can be
established simultaneously.

Proof: From Lemma A.2, it follows that:

ε =
δ

baγ2
+

∞∑
k=1

∏k−1
l=0 (1− α(l)cmin)δ

b(k)

=
δ

baγ2
+

∞∑
k=1

∏k−1
l=0

(
1− a1cmin

(k+a2)β

)
δ

b(k + a2)γ
. (40)

If β ∈ (0, 1), then by Lemma A.2,
∏k−1

l=0 (1− a1cmin

(k+a2)β
) con-

verges to 0 exponentially, which implies that ε is finite. If β = 1,
then by a1cmin + γ > 1 and Lemma A.2, ε is also finite. This
together with Theorem 3.5 proves the corollary. �

Remark 3.12: For any given (m�, r�, ε�), Theorems 3.4 and
3.9 provide a way to design the step-size α(k) and the noise
parameter b(k). From Corollary 3.2, as long as the parameters
β and γ satisfy β ∈ (0, 1], γ < β − 1

2 and a1cmin + γ > 1, the
feasible domain of the triplet (m�, r�, ε�) always exists. But
if both m�, r�, and ε� are required to be sufficiently small,
then there is no such β and γ because there is a trade-off
between the accuracy and the privacy of Algorithm 1. This is

consistent with the current literature’s results on differentially
private algorithms.

Remark 3.13: By (40), ε is inversely proportional to b. Note
that ε can be arbitrarily small if b is sufficiently large. Then, any
desired ε� can be obtained by adjusting b.

Remark 3.14: From Corollary 3.2, even if the variances of the
added noises increase, the mean-square average bipartite con-
sensus and differential privacy with a finite privacy level ε over
the infinite time horizon can still be established simultaneously.
Hence, Algorithm 1 is effective for protecting the infinite time
sequences of the state with guaranteed convergence, which is
superior to the algorithms in [32], [39], [40], [42], [43], and
[44].

F. Extension to Local Differential Privacy

In practice, each agent wants to set its own privacy level. In
this scenario, the private dataset becomes Di = xi(0) for any
i. To achieve this goal, the different privacy noise parameter
bi(k) can be chosen. In this section, we give the convergence
and privacy analysis of Algorithm 1 with the different privacy
noise parameter. We first give the following assumption on the
step-size α(k) and the different noise parameter bi(k).

Assumption 3.3: The step-size α(k) and the different noise
parameter bi(k) are positive and satisfy

sup
k

α(k) ≤ 1

λN (L) ,
∞∑

k=0

α(k) =∞,

∞∑
k=0

α2(k)b2i (k) < ∞.

Theorem 3.10: Suppose Assumptions 2.1, 3.2, and 3.3 hold.
Then, Algorithm 1 achieves the mean-square and almost-
sure average bipartite consensus with Var(x�) = 2

N2

∑∞
k=0∑

i∈V α
2(k)c2i b

2
i (k). Furthermore, if

∞∑
k=0

∑
i∈V

α2(k)c2i b
2
i (k) ≤

m�(r�)2 N2

2

then the (m�, r�)-accuracy is ensured.
Proof: The proof is similar to that of Theorems 3.1–3.3. Thus,

here we only present the main different parts as follows: We
replace (8) by

E[V (k + 1)|Fω
k ]

≤ [1− α(k)λ2(L)]2 V (k) + 2

N∑
i=1

α2(k)b2i (k)‖A‖2.

By Lemma A.1, the mean-square and almost-sure average
bipartite consensus are proved. Further, we replace (12) by
Var(x�) = 2

N2

∑∞
k=0

∑
i∈V α

2(k)c2i b
2
i (k). The proof of the

(m�, r�)-accuracy is similar to Theorem 3.4. �
Remark 3.15: The same step-size α(k) is chosen for all

agents to achieve the average bipartite consensus. If different
step-sizes are chosen, then E[1T

Nz(k)] = E[1T
Nz(k − 1)] cannot

hold in (10). In this case, it is difficult to ensure that Ex� =
1
N

∑N
i=1 sixi(0), which is necessary for the mean-square and

almost-sure average bipartite consensus.
Remark 3.16: Theorem 3.10 shows that the mean-square

and almost-sure average bipartite consensus of Algorithm 1
still holds under the appropriate assumptions on the different
privacy noise parameter. Different from the same privacy noise
parameter b(k) for all agents, the accuracy that depends on each
agent has changed. Even so, each agent cannot arbitrarily choose
its ownm� and r�, becausem� and r� are global parameters. By
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Fig. 1. Communication topology. (a) Structural balance. (b) Unsigned
graph.

Theorem 3.10, if the high accuracy is desired for some agents
while the high privacy is desired for others, then the requirement
for the high accuracy may not be met.

Next, we calculate the algorithm’s local differential privacy
level when each agent wants to set its own privacy level.

Theorem 3.11: Suppose Assumptions 2.1 and 3.2 hold. Then,
Algorithm 1 is εi-locally differentially private over the time
horizon T with εi =

∑T
k=0

S(k)
bi(k)

.

Proof: The proof is similar to that of Theorem 3.8. Thus,
here we only present the main different parts as follows: We re-
place

∑
i∈V |x

D′,O
i (0)− xD,O

i (0)| by |xD′,O
i (0)− xD,O

i (0)| in
(31) and (32), f(D, ρ(D,O)) =

∏
i∈V, k∈T f(D, ρ(D,O)i(k))

by fi(D, ρ(D,O)) =
∏

k∈T f(D, ρ(D,O)i(k)) in (34). �
Remark 3.17: Based on Theorem 3.11, each agent can set

its own privacy level εi by properly choosing the privacy noise
parameter bi(k). Specifically, if a stronger privacy-preserving
ability is desired for each agent, then a larger bi(k) should be
chosen, which further implies the worse accuracy of the algo-
rithm. This reveals the tradeoff between accuracy and privacy.

IV. NUMERICAL EXAMPLE

This section considers discrete-time MASs of five agents
coupled by the communication graph illustrated in Fig. 1. In this
example, we set δ = 0.1 and aim to achieve bipartite consensus
with the (m�, r�)-accuracy and ε�-differential privacy, where
m� = 0.44, r� = 3, and ε� = 1.2.

First, for the communication topology (a) in Fig. 1, we set
the step-size asα(k) = 1/(k + 1). Compared with the decaying
variance case with b(k) = 0.9k in [43] and [44], we employ the
proposed controller (3) using the increasing variances of the
privacy noises (2) with b(k) = (k + 1)0.1. The corresponding
results are depicted in Fig. 2(a) and (b), respectively, where
the trajectories of x(k) and y(k) are displayed. The former
figures in Fig. 2(a) and (b) reveals that both algorithms of this
article and [43], [44] converge. The latter figures in Fig. 2(a)
and (b) reveals that y(k) utilizing Algorithm 1 is random, while
the corresponding y(k) utilizing the algorithm of [43], [44]
converges.

Second, for distributed consensus with unsigned graph (S =
I), i.e., the communication topology (b) in Fig. 1, the comparison
between Algorithm 1 and [32], [39] is illustrated in Fig. 3(a)
and (b), respectively. The former figure in Fig. 3(a) and (b)
also reveals that both algorithms of this article and [32], [39]
converge. The latter figure in Fig. 3(a) and (b) also reveals that
y(k) utilizing Algorithm 1 is random, while the corresponding
y(k) utilizing the algorithm of [32], [39] converges.

Fig. 2. Comparison of Algorithm 1 with the existing differential privacy
approach in [43] and [44]. (a) Algorithm 1: α(k) = 1/(k + 1), b(k) =

(k + 1)0.1. (b) Refs. [43], [44]: b(k) = 0.9k.

Fig. 3. Comparison of Algorithm 1 with the existing differential privacy
approach in [32] and [39]. (a) Algorithm 1: α(k) = 1/(k + 1), b(k) =

(k + 1)0.1. (b) Refs. [32], [39]: b(k) = 0.9k.
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Fig. 4. Relationship of ε and γ, β.

Fig. 5. Mean-square convergence rate with β = 0.8 and different γ.

Based on the above analysis, Figs. 2 and 3 highlight that
Algorithm 1 has better privacy protection with guaranteed con-
vergence compared with [32], [39], [43], [44].

Finally, we seta1 = a2 = 1 and use the communication topol-
ogy (a) in Fig. 1 with cmin = 1. The relationship of ε and γ, β
is given in Fig. 4, which shows that the larger γ is, the smaller
ε is. Based on Theorem 3.5, we set β = 0.8. The mean-square
convergence rate with different γ is given in Fig. 5, which shows
that the larger γ is, the slower the algorithm’s convergence rate
is. This is consistent with the theoretical analysis.

V. CONCLUSION

This article develops a new differentially private bipartite
consensus algorithm over signed networks. We relax the selec-
tion of privacy noises in the existing mechanisms, such that the
variances of the privacy noises are time-varying and allowed
to increase with time. By using the stochastic approximation
method, the proposed algorithm achieves the mean-square and
almost-sure average bipartite consensus, and at the same time,
protects the initial value of each agent. Furthermore, we develop
a method to design the time-varying step-size and the noise
parameter to guarantee the desired consensus accuracy and pre-
defined differential privacy level. We also give the mean-square
and almost-sure convergence rates of the algorithm. Finally,
we reveal the tradeoff between the accuracy and privacy of the
algorithm, and extend the results to local differential privacy. It
is worth mentioning that many interesting topics deserve further

investigation, including differentially private consensus-based
optimization over signed networks and realizing privacy security
for MASs under active adversaries.

APPENDIX A
LEMMAS

Lemma A.1 ([48]): Let Vk, uk, βk, ζk be nonnega-
tive random variables. If

∑∞
k=0 uk < ∞,

∑∞
k=0 βk < ∞, and

E[Vk+1|Fk] ≤ (1 + uk)Vk − ζk + βk for all k ≥ 0, then Vk

converges almost surely and
∑∞

k=0 ζk < ∞ almost surely. Here
E[Vk+1|Fk] denotes the conditional mathematical expectation
for the given V0, . . . , Vk, u0, . . . , uk, β0, . . . , βk, ζ0, . . . , ζk.

Lemma A.2: For 0 < β ≤ 1, α > 0, k0 ≥ 0 and sufficiently
large l, we have

k∏
i=l

(
1− α

(i+ k0)β

)

≤

⎧⎨
⎩
(

l+k0

k+k0

)α
, β = 1

exp
(

α
1−β

(
(l+k0)

1−β−(k+k0+1)1−β
))

, β ∈ (0, 1).

(A.1)

If we further assume that β > 1/2, then for any γ > 0, we have

k∏
i=l

(
1− α

(i+ k0)β
+

γ

(i+ k0)2β

)

=

⎧⎨
⎩
O
((

l+k0

k+k0

)α)
, β = 1

O
(
exp
(

α
1−β

(
(l+k0)

1−β−(k+k0+1)1−β
)))

, β∈(1/2, 1).
(A.2)

Proof: By ln(1− x) ≤ −x,∀x ∈ (0, 1), for sufficiently large
l, we have

k∏
i=l

(
1− α

(i+ k0)β

)
= exp

(
k∑

i=l

ln

(
1− α

(i+ k0)β

))

≤ exp

(
−

k∑
i=l

α

(i+ k0)β

)
.

Note that f(x) = α
x+k0

with α > 0 is a strictly decreasing
function for x > 0. Then, when β = 1, we have

exp

(
−

k∑
i=l

α

i+ k0

)
≤ exp

(
−
∫ k

l

α

x+ k0
dx

)

= exp (α ln(l + k0)− α ln(k + k0))

=

(
l + k0
k + k0

)α

.

When β < 1, from (35) in [41] it follows that:

exp

(
−

k∑
i=l

α

(i+ k0)β

)

≤ exp

(
α

1− β

(
(l + k0)

1−β − (k + k0 + 1)1−β
))

.
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This completes the proof of (A.1).
Note that

k∏
i=l

(
1− α

(i+ k0)β
+

γ

(i+ k0)2β

)

=

k∏
i=l

(
1− α

(i+ k0)β

) k∏
i=l

(
1 +O

(
1

(i+ k0)2β

))
.

(A.3)

Since β > 1/2, by [49, Th. 2.1.3], we have supl,k
∏k

i=l(1 +

O( 1
(i+k0)2β

)) < ∞,which together with (A.1) and (A.3) implies
(A.2). �

Lemma A.3: For any given c, k0 ≥ 0, 0 < p ≤ 1, and q ∈ R,
we have

∑k
l=1

exp(c(l+k0)
p)

(l+k0)q
= O( exp(c(k+k0)

p)
(k+k0)p+q−1 ).

Proof: Note that

k∑
l=1

(l + k0)
p−1 exp (c(l + k0)

p)

= O

(∫ k+k0

1+k0

tp−1 exp(ctp)dt

)

= O (exp (c(k + k0)
p)) .

Then, using the Abel’s transformation (see [50, (6.29)]), we
have

k∑
l=1

exp (c(l + k0)
p)

(l + k0)q

=

(
k∑

i=1

exp (c(i+ k0)
p)

(i+ k0)1−p

)
1

(k + k0)p+q−1

+

k−1∑
l=1

(
l∑

i=1

exp (c(i+ k0)
p)

(i+ k0)1−p

)

·
(

1

(l + k0)p+q−1
− 1

(l + k0 + 1)p+q−1

)

= O

(
exp (c(k + k0)

p)

(k + k0)p+q−1

)
+O

(
k∑

l=1

exp (c(l + k0)
p)

(l + k0)p+q

)

which together with

O

(
k∑

l=1

exp (c(l + k0)
p)

(l + k0)p+q

)
= o

(
k∑

l=1

exp (c(l + k0)
p)

(l + k0)q

)

implies the lemma. �
Lemma A.4: For γ < 1, 0 < β < 1, ν > 0, we have∫ ∞

1

x−γ exp
(
−νx1−β

)
dx =

ν−
1−γ
1−β

1− β
Γ

(
1− γ

1− β
, ν

)

where Γ(·, ·) is the upper incomplete gamma function.
Proof: Denote t = νx1−β . Then, we have dt = ν(1−

β)x−βdx, and ∫ ∞

1

x−γ exp
(
−νx1−β

)
dx

=

∫ ∞

ν

1

ν(1− β)

(
t

ν

) 1−γ
1−β−1

e−tdt

=
ν−

1−γ
1−β

1− β
Γ

(
1− γ

1− β
, ν

)
.

�
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